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The dynamic Monte Carlo Renormalization group method introduced by Jan, 
Moseley, and Stauffer is used to determine the dynamic exponent of the Ising 
model with conserved magnetization in two dimensions. We present an explicit 
theoretical basis for the method and expand on the original results for the 
Kawasaki model. The new result clearly demonstrates the validity of the method 
and the value of the dynamic exponent, z = 3.79 + 0.05, supports the conclusion 
of Halperin, Hohenberg, and Ma. 
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1. I N T R O D U C T I O N  

The history of the combina t ion  of renormal izat ion group (RG)  and Monte  
Carlo simulation was outlined by Jan et al. (JMS). (1) They also introduced 
a new dynamical  R G  which compares  favorably in its computa t iona l  sim- 
plicity with the large-cell R G  of Reynolds et al .]  3) used for calculating 
static exponents. Reasonable results were obtained with a very significant 
reduct ion of  comput ing  effort and the method  has been subsequently 
applied to the Pot ts  and the eight-vertex models, ca) In Section 2 we review 
the theoretical foundat ions in sufficient detail to illustrate the distinction 
between this R G  and conventional ,  finite-size scaling. 

The size of the systems analyzed to determine z for the Glauber  model  
(magnetizat ion not  conserved) has been increased from ~ 2 x 10  6 t o  ~ 10  8 

spins by the use of supercomputers  (5) and special-purpose machines. (6) The 
Kawasaki  model  (conserved magnet izat ion)  has not,  however, received the 
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same level of attention, largely because of the greater computational effort 
required to reach equilibrium when compared with the Glauber model. 
Nevertheless, this model is of considerable interest because of its rela- 
tionship to other problems, such as domain growth and order-disorder 
transitions. (7) Our results for the Kawasaki model are presented in 
Section 3. 

2. THEORY 

2.1. Finite-Size Scaling 

For a system of linear dimension L, the equilibrium magnetization 
obeys the finite scaling ansatz (8) 

ME(T, t= oo)=L ~/vfE(T- T,.)L 1/v] (1) 

This form is well known and was reviewed in ref. 9. 
For the nonequilibrium situation, starting with all spins up, the system 

relaxes to equilibrium as 

Me(t) = L-~/VjTE(T- Tc)L l/v, t/L z] (2) 

At the critical temperature this reduces to 

Me(t)= L ~/Vg(t/LZ) (3) 

Now, by comparing times tl and te at which [MI/L1/~/~] is equal to 
EMz/L2~/~], we find 

tilL] = tz/L~ 

or, for MI = M2, 

t l / L ~  + ~/~ = t 2 / L ~  + '/~ (4) 

If in our simulation we calculate ML for different values of L as a 
function of T, then we expect the behavior shown in Fig. la, with the sharp 
fall of ME tO zero occurring only for the infinite system. 

2.2. Renormalized Scaling 

Consider a Monte Carlo configuration and its renormalized images, 
i.e., the set of systems formed by blocking the configuration into cells and 
replacing the cells with renormalized spins whose states are determined by 
the majority of spins in that cell (see ref. 10 for a general review). The 
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Fig. 1. (a) The magnetization Mr of a system of L 2 spins as a function of the temperature 
T; T~ is the critical temperature. (b) The magnetization M b of a system of (L/b) 2 superspins 
as a function of the temperature T. 

renormalized spin replacing each cell is thus determined by the sign of the 
magnetization of that cell, Thus, as b--, o% for T slightly below T~ one 
finds IMbl = 1, while for T >  T c, M b = 0 ,  where M b  is the magnetization of 
the renormalized configuration whose cells are of size b. 

This behavior is illustrated in Fig. lb. Note that this is quite different 
from Fig. la and is closer to the large-cell real-space RG of Reynolds et 

a]. (3) Stauffer (~) has shown that for L>>b the finite-size scaling ansatz for 
the equilibrium state is 

Mb = f [ ( T -  Tc)b I/v] (5) 

and the nonequilibrium situation would be described by 

m b = ? [ ( T -  Yc)b l/v, (t/bz)] (6) 

At the critical temperature this reduces to 

M~ = g ( t / b : )  (7) 
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and there for Mbl = Mb2 we have the simple relation 

tl/b  = t2/b; (8) 

Note  that there are no factors o f L  /~/~ in Eq. (6) and (8). The problem 
is thus reduced to the accurate determinat ion of the times tl and t 2 at 
which the magnet izat ions Mbl and Mba of two ten�9 systems are 
equal. 

3 .  R E S U L T S  

In Fig. 2 we show the results of our  simulation of the relaxation of a 
two-dimensional  system of 600 x 600 spins via Kawasaki  dynamics. Fol low- 
ing JMS, we have included further neighbors in the exchange process. 
On  this occasion, however,  we have demonstrated that  the so-called 
"generalized Kawasaki  model"  lies in the same universality class as the 
usual Kawasaki  model,  by showing that  the curves for the further-neighbor 
exchange may  be b rought  into coincidence with that for the nearest- 
neighbor  exchange only, if we simply rescale the time by the relative 
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Fig. 2. Relaxation of the original energy and of the renormalized energies with time, i.e., 
with the number of Monte Carlo steps per spin in the original system of 600 x 600 spins. These 
curves are assembled by scaling the time axes of similar (original) systems by the ratio of the 
number of spins between which exchange is allowed during relaxation. The curves may then 
be made to coincide by shifts to the right or left along the time axis. The numbers on the data 
sets give b, the length rescaling factor. 
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Table I. 
Exponent  Estimates for  the Two-D imens iona l  z: 
General ized Kawasaki  Mode l  to t = 2 x l 0 5  M C S  

z 

b' b = 8  b = 7  b = 6  b = 5  b = 4  

7 3.75 
6 3.79 3.83 
5 3.80 3.86 3.79 
4 3.86 3.72 3.76 
3 3.78 3.75 

number of spins in the "exchange cells." This is shown clearly in Fig. 2, 
which is derived from separate 600 x 600 systems involving lst-, 5th-, 9th-, 
14th-, and 19th-neighbor exchange. The corresponding exchange cells have 
5, 25, 49, 81, and 221 spins and therefore time scaling factors of 1, 5, 9.8, 
16.2, and 24.2, respectively. This scaling allows us to follow the relaxation 
to very much longer (effective) times than we could otherwise have 
achieved. The simulation was carried out on an IBM PS/2 micro- 
computer (~2) with occasional confirmatory runs on DEC Vax 11/750 and 
an IBM 370/168. 

The results of our estimation of the exponent z are shown in Table I, 
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Fig. 3. Relaxation curves for the Kawasaki  model. In this case exchange is only allowed 
between nearest neighbors and computing constraints restrict us to times too short  to obtain 
"good" values of z. 
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Table II. 
Exponent Estimates for the Two-Dimensional  z: 

Kawasaki Model t o  t = 5 x l 0 3  M C S  

z 

b' b = 6  b = 5  b = 4  b - 3  

5 4.26 
4 4.16 4.11 
3 4.18 4.15 4.19 
2 4.19 4.03 3.76 3.23 

and we conclude that z ~ 3.79, with a statistical error of about  0.05. Cells 
of size b x b and of size b' x b' are renormalized into one superspin each 
and the systems thus formed are compared. The exponent z is then 
calculated as ln(tb/tb,)/ln(b/b'), where the time is obtained from the shift 
along the time axis of the curves for different b and b' values shown in 
Fig. 2 to bring them into coincidence, thereby achieving the required com- 
parison of Eb and Eb, over a wide time range. E b and E b, are respective 
energies of the renormalized system b and b'. As discussed in JMS, this 
method is expected to give more reliable results for higher values of b and 
smaller ratios bib'. The latter condition arises because the shifting necessary 
to bring the curve, for example, for b = 8 into coincidence with that for 
b = 4 requires reliance on times < ~ 104 MCS. The matching is usually 
more consistent when longer time regions on both curves are used (which 
also means greater regions of overlap). Furthermore,  use of the shorter 
time regions will be less accurate, since the rescaling of the "generalized 
Kawasaki  model" back to the usual, nearest-neighbor-exchange-only model 
cannot be accurate at short times. 

In Fig. 3, we show the corresponding curves for the usual Kawasaki  
model without enhanced diffusion. The estimates of z are shown in 
Table II, and lead to z=4.0_+0.3.  Computing constraints limit us to 

5 x 103 MCS in this case-- in  comparison with effectively ~ 2 x 105 MCS 
when we use the generalized model. 

4. CONCLUSION 

Our result z = 3.79 _+ 0.05 agrees very well with the result predicted by 
the Halperin eta/ .  (2) relation 

z =  4 - - t / =  3.75 
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C o m p a r i s o n  of this result  with the ear l ier  value z = 3.9 + 0.1 found by J M S  

for a 300 x 300 spin system confi rms the effectiveness of our  p rocedures  in 
reducing errors  due to finite-size effects as well as reducing compu t ing  
effort. 

We  have just i f ied the premise of this s imple R G  method ,  i.e., Eq. (7), 
and  shown how this r eno rma l i za t ion  g roup  is different from finite-size 
scaling. 
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